Investigating synergism during sequential inactivation of Bacillus subtilis spores with several disinfectants.
نویسندگان
چکیده
The sequential application of ozone, chlorine dioxide, or UV followed by free chlorine was performed to investigate the synergistic inactivation of Bacillus subtilis spores. The greatest synergism was observed when chlorine dioxide was used as a primary disinfectant followed by secondary disinfection with free chlorine. A lesser synergistic effect was observed when ozone was used as the primary disinfectant, but no synergism was observed when UV was used as the primary disinfectant. When free chlorine was used as the primary disinfectant (i.e., sequential application in the reverse order), the synergistic effect was shown only when chlorine dioxide was applied as the secondary disinfectant. The synergistic effect observed could be related to damage to the spore coat during primary disinfection, suggested by the loss of proteins from spores during disinfectant treatment. The greatest synergism observed by the chlorine dioxide/free chlorine pair suggested that common reaction sites might exist for these disinfectants. The concept of percent synergistic effect was introduced to quantitatively compare the extent of synergistic effects in the sequential disinfection processes.
منابع مشابه
The differential effects of heat-shocking on the viability of spores from Bacillus anthracis, Bacillus subtilis, and Clostridium sporogenes after treatment with peracetic acid- and glutaraldehyde-based disinfectants
This study investigated (1) the susceptibility of Bacillus anthracis (Ames strain), Bacillus subtilis (ATCC 19659), and Clostridium sporogenes (ATCC 3584) spores to commercially available peracetic acid (PAA)- and glutaraldehyde (GA)-based disinfectants, (2) the effects that heat-shocking spores after treatment with these disinfectants has on spore recovery, and (3) the timing of heat-shocking ...
متن کاملInvestigating the Inactivation Mechanism of Bacillus subtilis Spores by High Pressure CO2
The objective of this study was to investigate the inactivation mechanism of Bacillus subtilis spores by high pressure CO2 (HPCD) processing. The spores of B. subtilis were subjected to heat at 0.1 MPa or HPCD at 6.5-20 MPa, and 64-86°C for 0-120 min. The germination, the permeability of inner membrane (IM) and cortex, the release of pyridine-2, 6-dicarboxylic acid (DPA), and changes in the mor...
متن کاملSynergism between different germinant receptors in the germination of Bacillus subtilis spores.
Rates of commitment to germinate and germination of Bacillus subtilis spores with mixtures of low concentrations of germinants acting on different germinant receptors (GRs) were much higher than the sums of the rates of commitment and germination with individual germinants alone. This synergism with mixtures of nutrient germinants was not seen with spores lacking GRs responsible for recognizing...
متن کاملUV resistance of Bacillus anthracis spores revisited: validation of Bacillus subtilis spores as UV surrogates for spores of B. anthracis Sterne.
Recent bioterrorism concerns have prompted renewed efforts towards understanding the biology of bacterial spore resistance to radiation with a special emphasis on the spores of Bacillus anthracis. A review of the literature revealed that B. anthracis Sterne spores may be three to four times more resistant to 254-nm-wavelength UV than are spores of commonly used indicator strains of Bacillus sub...
متن کاملThe differential susceptibility of spores from virulent and attenuated Bacillus anthracis strains to aldehyde- and hypochlorite-based disinfectants
This study compared the sensitivity of spores from virulent and attenuated Bacillus anthracis strains in suspension to inactivation by various chemical disinfectants. Spore suspensions from two virulent strains (A0256 and A0372) and two attenuated strains (Sterne and A0141) of B. anthracis were tested against two aldehyde-based disinfectants and one hypochlorite-based disinfectant. A novel stat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Water research
دوره 40 15 شماره
صفحات -
تاریخ انتشار 2006